Decision Support Systems to Inform Marine Policy

Project leader: Professor Sue Chilton, Newcastle University susan.chilton@ncl.ac.uk

Aim

Use interdisciplinary methods to develop a prototype, 'proof-ofconcept' Bayesian Belief Network (BBN)-based tool, to communicate to policymakers the simultaneous impacts of a marine policy on marine health, economic output and social wellbeing.

- The BBN provided a focus for interdisciplinary conversation and application. Its reductionist nature caused friction initially although, on balance, it was accepted as available method with which to address this type of policy problem.
- A significant challenge remains in defining values.
- Future discussion should ensure the cultural values and perceptions are included prior to any attempts to measure value.

Research

- 14 academics (economists, planners, marine scientists, policy analysis) formed an interdisciplinary team of researchers.
- The team conceptualised and populated a BBN (Figure 1) for a representative fishing community (West Indian Ocean) from existing datasets and academic and stakeholder expertise, reflecting the mixed nature of data available to marine decision makers.
- The impact of implementing a Marine Protection Area (MPA) was evaluated based on four community state scenarios with differing dependencies: Baseline, Poor Ecosystem, Subsistence-only fishing

and Heavy fishing.

• Using the BBN we predicted outcomes for social wellbeing, marine health and economic value.

Findings

- Implementing an MPA changes the likelihood of different outcomes in all sectors (see Table 1).
- Including non-market values in the model allowed loss of fishing revenue to be balanced out by (monetarised) benefits of marine protection.

		Sector		
Stat sec	Status of sector	Social Wellbeing	Marine Health	Economic Value
			(% probability)	
No MPA	Low	48	62	36 (49)*
	Med/high	52	38	21 (13)*
With MPA	Low	53	40	39 (53)*
	Med/high	47	60	23 (11)*

Figure 1. The BBN model: the impacts of an MPA on the three sectors of social wellbeing, economic value and marine health

Conclusions

- BBNs have the potential to visibly communicate significant policy impacts across different sectors and could assist in, for example, demonstrating the effects of a co-location approach in zoning/policy decisions.
- BBN is a holistic, iterative, problem-focused tool that can incorporate and include different types stakeholder input at all stages of the evaluation process.
- BBN models can form a decision support tool if customcreated with policy-maker input from the start.

Next steps

• Temporal discrepancy between policy cycles (< 5 years) and

Table 1. Impact of an MPA on the status of social wellbeing, marine health andeconomic value of a subsistence-only fishing community, estimated using a BBN.* Figures in brackets are without the inclusion of non-market economic values

the long term effects on marine health and social and economic wellbeing will need to be reconciled.

- Apply BBNs to multiple as opposed to single policy evaluation.
- Further develop interdisciplinary working skills to maximise academic advancement and policy support.

www.valuing-nature.net/projects/marine-governance

